@cubejs-client/core
Vanilla JavaScript client for Cube.
cube
cube(apiToken: string | () => Promise‹string›, options: CubeApiOptions): CubeApi
Creates an instance of the CubeApi
. The API entry point.
import cube from '@cubejs-client/core';
const cubeApi = cube(
'CUBE-API-TOKEN',
{ apiUrl: 'http://localhost:4000/cubejs-api/v1' }
);
You can also pass an async function or a promise that will resolve to the API token
import cube from '@cubejs-client/core';
const cubeApi = cube(
async () => await Auth.getJwtToken(),
{ apiUrl: 'http://localhost:4000/cubejs-api/v1' }
);
Parameters:
Name | Type | Description |
---|---|---|
apiToken | string | () => Promise‹string› | API token is used to authorize requests and determine SQL database you're accessing. In the development mode, Cube will print the API token to the console on startup. In case of async function authorization is updated for options.transport on each request. |
options | CubeApiOptions | - |
cube(options: CubeApiOptions): CubeApi
defaultHeuristics
defaultHeuristics(newQuery: Query, oldQuery: Query, options: TDefaultHeuristicsOptions): any
defaultOrder
defaultOrder(query: Query): object
movePivotItem
movePivotItem(pivotConfig: PivotConfig, sourceIndex: number, destinationIndex: number, sourceAxis: TSourceAxis, destinationAxis: TSourceAxis): PivotConfig
CubeApi
Main class for accessing Cube API
dryRun
dryRun(query: Query | Query[], options?: LoadMethodOptions): Promise‹TDryRunResponse›
dryRun(query: Query | Query[], options: LoadMethodOptions, callback?: LoadMethodCallback‹TDryRunResponse›): void
Get query related meta without query execution
load
load(query: Query | Query[], options?: LoadMethodOptions): Promise‹ResultSet›
load(query: Query | Query[], options?: LoadMethodOptions, callback?: LoadMethodCallback‹ResultSet›): void
Fetch data for the passed query
.
import cube from '@cubejs-client/core';
import Chart from 'chart.js';
import chartjsConfig from './toChartjsData';
const cubeApi = cube('CUBE_TOKEN');
const resultSet = await cubeApi.load({
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
});
const context = document.getElementById('myChart');
new Chart(context, chartjsConfig(resultSet));
Parameters:
Name | Type | Description |
---|---|---|
query | Query | Query[] | Query object |
options? | LoadMethodOptions | - |
callback? | LoadMethodCallback‹ResultSet› | - |
meta
meta(options?: LoadMethodOptions): Promise‹Meta›
meta(options?: LoadMethodOptions, callback?: LoadMethodCallback‹Meta›): void
Get meta description of cubes available for querying.
sql
sql(query: Query | Query[], options?: LoadMethodOptions): Promise‹SqlQuery›
sql(query: Query | Query[], options?: LoadMethodOptions, callback?: LoadMethodCallback‹SqlQuery›): void
Get generated SQL string for the given query
.
Parameters:
Name | Type | Description |
---|---|---|
query | Query | Query[] | Query object |
options? | LoadMethodOptions | - |
callback? | LoadMethodCallback‹SqlQuery› | - |
subscribe
subscribe(query: Query | Query[], options: LoadMethodOptions | null, callback: LoadMethodCallback‹ResultSet›): void
Allows you to fetch data and receive updates over time. See Real-Time Data Fetch
cubeApi.subscribe(
{
measures: ['Logs.count'],
timeDimensions: [
{
dimension: 'Logs.time',
granularity: 'hour',
dateRange: 'last 1440 minutes',
},
],
},
options,
(error, resultSet) => {
if (!error) {
// handle the update
}
}
);
HttpTransport
Default transport implementation.
constructor
new HttpTransport(options: TransportOptions): HttpTransport
request
request(method: string, params: any): () => Promise‹any›
Implementation of ITransport
Meta
Contains information about available cubes and it's members.
defaultTimeDimensionNameFor
defaultTimeDimensionNameFor(memberName: string): string
filterOperatorsForMember
filterOperatorsForMember(memberName: string, memberType: MemberType | MemberType[]): any
membersForQuery
membersForQuery(query: Query | null, memberType: MemberType): TCubeMeasure[] | TCubeDimension[] | TCubeMember[]
Get all members of a specific type for a given query. If empty query is provided no filtering is done based on query context and all available members are retrieved.
Parameters:
Name | Type | Description |
---|---|---|
query | Query | null | context query to provide filtering of members available to add to this query |
memberType | MemberType | - |
resolveMember
resolveMember‹T›(memberName: string, memberType: T | T[]): object | TCubeMemberByType‹T›
Get meta information for a cube member Member meta information contains:
{
name,
title,
shortTitle,
type,
description,
format
}
Type parameters:
- T: MemberType
Parameters:
Name | Type | Description |
---|---|---|
memberName | string | Fully qualified member name in a form Cube.memberName |
memberType | T | T[] | - |
ProgressResult
stage
stage(): string
timeElapsed
timeElapsed(): string
ResultSet
Provides a convenient interface for data manipulation.
annotation
annotation(): QueryAnnotations
chartPivot
chartPivot(pivotConfig?: PivotConfig): ChartPivotRow[]
Returns normalized query result data in the following format.
You can find the examples of using the pivotConfig
here
// For the query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
}
// ResultSet.chartPivot() will return
[
{ "x":"2015-01-01T00:00:00", "Stories.count": 27120, "xValues": ["2015-01-01T00:00:00"] },
{ "x":"2015-02-01T00:00:00", "Stories.count": 25861, "xValues": ["2015-02-01T00:00:00"] },
{ "x":"2015-03-01T00:00:00", "Stories.count": 29661, "xValues": ["2015-03-01T00:00:00"] },
//...
]
When using chartPivot()
or seriesNames()
, you can pass aliasSeries
in the pivotConfig
to give each series a unique prefix. This is useful for blending queries
which use the same measure multiple times.
// For the queries
{
measures: ['Stories.count'],
timeDimensions: [
{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month',
},
],
},
{
measures: ['Stories.count'],
timeDimensions: [
{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month',
},
],
filters: [
{
member: 'Stores.read',
operator: 'equals',
value: ['true'],
},
],
},
// ResultSet.chartPivot({ aliasSeries: ['one', 'two'] }) will return
[
{
x: '2015-01-01T00:00:00',
'one,Stories.count': 27120,
'two,Stories.count': 8933,
xValues: ['2015-01-01T00:00:00'],
},
{
x: '2015-02-01T00:00:00',
'one,Stories.count': 25861,
'two,Stories.count': 8344,
xValues: ['2015-02-01T00:00:00'],
},
{
x: '2015-03-01T00:00:00',
'one,Stories.count': 29661,
'two,Stories.count': 9023,
xValues: ['2015-03-01T00:00:00'],
},
//...
];
decompose
decompose(): Object
Can be used when you need access to the methods that can't be used with some query types (eg compareDateRangeQuery
or blendingQuery
)
resultSet.decompose().forEach((currentResultSet) => {
console.log(currentResultSet.rawData());
});
drillDown
drillDown(drillDownLocator: DrillDownLocator, pivotConfig?: PivotConfig): Query | null
Returns a measure drill down query.
Provided you have a measure with the defined drillMemebers
on the Orders
cube
measures: {
count: {
type: `count`,
drillMembers: [Orders.status, Users.city, count],
},
// ...
}
Then you can use the drillDown
method to see the rows that contribute to that metric
resultSet.drillDown(
{
xValues,
yValues,
},
// you should pass the `pivotConfig` if you have used it for axes manipulation
pivotConfig
)
the result will be a query with the required filters applied and the dimensions/measures filled out
{
measures: ['Orders.count'],
dimensions: ['Orders.status', 'Users.city'],
filters: [
// dimension and measure filters
],
timeDimensions: [
//...
]
}
In case when you want to add order
or limit
to the query, you can simply spread it
// An example for React
const drillDownResponse = useCubeQuery(
{
...drillDownQuery,
limit: 30,
order: {
'Orders.ts': 'desc'
}
},
{
skip: !drillDownQuery
}
);
pivot
pivot(pivotConfig?: PivotConfig): PivotRow[]
Base method for pivoting ResultSet data.
Most of the times shouldn't be used directly and chartPivot
or tablePivot
should be used instead.
You can find the examples of using the pivotConfig
here
// For query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-03-31'],
granularity: 'month'
}]
}
// ResultSet.pivot({ x: ['Stories.time'], y: ['measures'] }) will return
[
{
xValues: ["2015-01-01T00:00:00"],
yValuesArray: [
[['Stories.count'], 27120]
]
},
{
xValues: ["2015-02-01T00:00:00"],
yValuesArray: [
[['Stories.count'], 25861]
]
},
{
xValues: ["2015-03-01T00:00:00"],
yValuesArray: [
[['Stories.count'], 29661]
]
}
]
query
query(): Query
rawData
rawData(): T[]
serialize
serialize(): Object
Can be used to stash the ResultSet
in a storage and restored later with deserialize
series
series‹SeriesItem›(pivotConfig?: PivotConfig): Series‹SeriesItem›[]
Returns an array of series with key, title and series data.
// For the query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
}
// ResultSet.series() will return
[
{
key: 'Stories.count',
title: 'Stories Count',
series: [
{ x: '2015-01-01T00:00:00', value: 27120 },
{ x: '2015-02-01T00:00:00', value: 25861 },
{ x: '2015-03-01T00:00:00', value: 29661 },
//...
],
},
]
Type parameters:
- SeriesItem
seriesNames
seriesNames(pivotConfig?: PivotConfig): SeriesNamesColumn[]
Returns an array of series objects, containing key
and title
parameters.
// For query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
}
// ResultSet.seriesNames() will return
[
{
key: 'Stories.count',
title: 'Stories Count',
yValues: ['Stories.count'],
},
]
tableColumns
tableColumns(pivotConfig?: PivotConfig): TableColumn[]
Returns an array of column definitions for tablePivot
.
For example:
// For the query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
}
// ResultSet.tableColumns() will return
[
{
key: 'Stories.time',
dataIndex: 'Stories.time',
title: 'Stories Time',
shortTitle: 'Time',
type: 'time',
format: undefined,
},
{
key: 'Stories.count',
dataIndex: 'Stories.count',
title: 'Stories Count',
shortTitle: 'Count',
type: 'count',
format: undefined,
},
//...
]
In case we want to pivot the table axes
// Let's take this query as an example
{
measures: ['Orders.count'],
dimensions: ['Users.country', 'Users.gender']
}
// and put the dimensions on `y` axis
resultSet.tableColumns({
x: [],
y: ['Users.country', 'Users.gender', 'measures']
})
then tableColumns
will group the table head and return
{
key: 'Germany',
type: 'string',
title: 'Users Country Germany',
shortTitle: 'Germany',
meta: undefined,
format: undefined,
children: [
{
key: 'male',
type: 'string',
title: 'Users Gender male',
shortTitle: 'male',
meta: undefined,
format: undefined,
children: [
{
// ...
dataIndex: 'Germany.male.Orders.count',
shortTitle: 'Count',
},
],
},
{
// ...
shortTitle: 'female',
children: [
{
// ...
dataIndex: 'Germany.female.Orders.count',
shortTitle: 'Count',
},
],
},
],
},
// ...
tablePivot
tablePivot(pivotConfig?: PivotConfig): Array‹object›
Returns normalized query result data prepared for visualization in the table format.
You can find the examples of using the pivotConfig
here
For example:
// For the query
{
measures: ['Stories.count'],
timeDimensions: [{
dimension: 'Stories.time',
dateRange: ['2015-01-01', '2015-12-31'],
granularity: 'month'
}]
}
// ResultSet.tablePivot() will return
[
{ "Stories.time": "2015-01-01T00:00:00", "Stories.count": 27120 },
{ "Stories.time": "2015-02-01T00:00:00", "Stories.count": 25861 },
{ "Stories.time": "2015-03-01T00:00:00", "Stories.count": 29661 },
//...
]
deserialize
static
deserialize‹TData›(data: Object, options?: Object): ResultSet‹TData›
import { ResultSet } from '@cubejs-client/core';
const resultSet = await cubeApi.load(query);
// You can store the result somewhere
const tmp = resultSet.serialize();
// and restore it later
const resultSet = ResultSet.deserialize(tmp);
Type parameters:
- TData
Parameters:
Name | Type | Description |
---|---|---|
data | Object | the result of serialize |
options? | Object | - |
getNormalizedPivotConfig
static
getNormalizedPivotConfig(query: PivotQuery, pivotConfig?: Partial‹PivotConfig›): PivotConfig
SqlQuery
rawQuery
rawQuery(): SqlData
sql
sql(): string
ITransport
request
request(method: string, params: any): () => Promise‹void›
Types
Annotation
Name | Type |
---|---|
format? | "currency" | "percent" | "number" |
shortTitle | string |
title | string |
type | string |
BinaryFilter
Name | Type |
---|---|
and? | BinaryFilter[] |
dimension? | string |
member? | string |
operator | BinaryOperator |
or? | BinaryFilter[] |
values | string[] |
BinaryOperator
BinaryOperator: "equals" | "notEquals" | "contains" | "notContains" | "gt" | "gte" | "lt" | "lte" | "inDateRange" | "notInDateRange" | "beforeDate" | "afterDate"
ChartPivotRow
Name | Type |
---|---|
x | string |
xValues | string[] |
Column
Name | Type |
---|---|
key | string |
series | [] |
title | string |
CubeApiOptions
Name | Type | Description |
---|---|---|
apiUrl | string | URL of your Cube API. By default, in the development environment it is http://localhost:4000/cubejs-api/v1 |
credentials? | "omit" | "same-origin" | "include" | - |
headers? | Record‹string, string› | - |
parseDateMeasures? | boolean | - |
pollInterval? | number | - |
transport? | ITransport | Transport implementation to use. HttpTransport will be used by default. |
DateRange
DateRange: string | [string, string]
DrillDownLocator
Name | Type |
---|---|
xValues | string[] |
yValues? | string[] |
Filter
Filter: BinaryFilter | UnaryFilter
LoadMethodCallback
LoadMethodCallback: function
LoadMethodOptions
Name | Type | Optional? | Description |
---|---|---|---|
castNumerics | boolean | ✅ Yes | Pass true if you'd like all members with the number type to be automatically converted to JavaScript Number type. Note that this is a potentially unsafe operation since numbers more than Number.MAX_SAFE_INTEGER (opens in a new tab) or less than Number.MIN_SAFE_INTEGER can't be represented as JavaScript Number |
mutexKey | string | ✅ Yes | Key to store the current request's MUTEX inside the mutexObj . MUTEX object is used to reject orphaned queries results when new queries are sent. For example: if two queries are sent with the same mutexKey only the last one will return results. |
mutexObj | Object | ✅ Yes | Object to store MUTEX |
progressCallback | ✅ Yes | ||
subscribe | boolean | ✅ Yes | Pass true to use continuous fetch behavior. |
LoadResponse
Name | Type |
---|---|
pivotQuery | PivotQuery |
queryType | QueryType |
results | LoadResponseResult‹T›[] |
LoadResponseResult
Name | Type |
---|---|
annotation | QueryAnnotations |
data | T[] |
lastRefreshTime | string |
query | Query |
MemberType
MemberType: "measures" | "dimensions" | "segments"
PivotConfig
Configuration object that contains information about pivot axes and other options.
Let's apply pivotConfig
and see how it affects the axes
// Example query
{
measures: ['Orders.count'],
dimensions: ['Users.country', 'Users.gender']
}
If we put the Users.gender
dimension on y axis
resultSet.tablePivot({
x: ['Users.country'],
y: ['Users.gender', 'measures']
})
The resulting table will look the following way
Users Country | male, Orders.count | female, Orders.count |
---|---|---|
Australia | 3 | 27 |
Germany | 10 | 12 |
US | 5 | 7 |
Now let's put the Users.country
dimension on y axis instead
resultSet.tablePivot({
x: ['Users.gender'],
y: ['Users.country', 'measures'],
});
in this case the Users.country
values will be laid out on y or columns axis
Users Gender | Australia, Orders.count | Germany, Orders.count | US, Orders.count |
---|---|---|---|
male | 3 | 10 | 5 |
female | 27 | 12 | 7 |
It's also possible to put the measures
on x axis. But in either case it should always be the last item of the array.
resultSet.tablePivot({
x: ['Users.gender', 'measures'],
y: ['Users.country'],
});
Users Gender | measures | Australia | Germany | US |
---|---|---|---|---|
male | Orders.count | 3 | 10 | 5 |
female | Orders.count | 27 | 12 | 7 |
Name | Type | Description |
---|---|---|
aliasSeries? | string[] | Give each series a prefix alias. Should have one entry for each query:measure. See chartPivot |
fillMissingDates? | boolean | null | true by default. If set to true , missing dates on the time dimensions will be filled with fillWithValue or 0 by default for all measures. Note: setting this option to true will override any order applied to the query. |
fillWithValue? | string | null | Value to autofill all the missing date's measure. |
x? | string[] | Dimensions to put on x or rows axis. |
y? | string[] | Dimensions to put on y or columns axis. |
PivotQuery
PivotQuery: Query & object
PivotRow
Name | Type |
---|---|
xValues | Array‹string | number› |
yValuesArray | Array‹[string[], number]› |
ProgressResponse
Name | Type |
---|---|
stage | string |
timeElapsed | number |
Query
Name | Type |
---|---|
dimensions? | string[] |
filters? | Filter[] |
limit? | number |
measures? | string[] |
offset? | number |
order? | TQueryOrderObject | TQueryOrderArray |
renewQuery? | boolean |
segments? | string[] |
timeDimensions? | TimeDimension[] |
timezone? | string |
ungrouped? | boolean |
QueryAnnotations
Name | Type |
---|---|
dimensions | Record‹string, Annotation› |
measures | Record‹string, Annotation› |
timeDimensions | Record‹string, Annotation› |
QueryOrder
QueryOrder: "asc" | "desc"
QueryType
QueryType: "regularQuery" | "compareDateRangeQuery" | "blendingQuery"
Series
Name | Type |
---|---|
key | string |
series | T[] |
title | string |
SeriesNamesColumn
Name | Type |
---|---|
key | string |
title | string |
yValues | string[] |
SqlApiResponse
Name | Type |
---|---|
sql | SqlData |
SqlData
Name | Type |
---|---|
aliasNameToMember | Record‹string, string› |
cacheKeyQueries | object |
dataSource | boolean |
external | boolean |
sql | SqlQueryTuple |
SqlQueryTuple
SqlQueryTuple: [string, boolean | string | number]
TCubeDimension
TCubeDimension: TCubeMember & object
TCubeMeasure
TCubeMeasure: TCubeMember & object
TCubeMember
Name | Type |
---|---|
name | string |
shortTitle | string |
title | string |
isVisible? | boolean |
meta? | any |
type | TCubeMemberType |
TCubeMemberByType
TCubeMemberByType: T extends "measures" ? TCubeMeasure : T extends "dimensions" ? TCubeDimension : T extends "segments" ? TCubeSegment : never
TCubeMemberType
TCubeMemberType: "time" | "number" | "string" | "boolean"
TCubeSegment
TCubeSegment: Pick‹TCubeMember, "name" | "shortTitle" | "title"›
TDefaultHeuristicsOptions
Name | Type |
---|---|
meta | Meta |
sessionGranularity? | TimeDimensionGranularity |
TDryRunResponse
Name | Type |
---|---|
normalizedQueries | Query[] |
pivotQuery | PivotQuery |
queryOrder | Array‹object› |
queryType | QueryType |
TFlatFilter
Name | Type |
---|---|
dimension? | string |
member? | string |
operator | BinaryOperator |
values | string[] |
TQueryOrderArray
TQueryOrderArray: Array‹[string, QueryOrder]›
TQueryOrderObject
TableColumn
Name | Type |
---|---|
children? | TableColumn[] |
dataIndex | string |
format? | any |
key | string |
meta | any |
shortTitle | string |
title | string |
type | string | number |
TimeDimension
TimeDimension: TimeDimensionComparison | TimeDimensionRanged
TimeDimensionBase
Name | Type |
---|---|
dimension | string |
granularity? | TimeDimensionGranularity |
TimeDimensionComparison
TimeDimensionComparison: TimeDimensionBase & object
TimeDimensionGranularity
TimeDimensionGranularity: "second" | "minute" | "hour" | "day" | "week" | "month" | "year"
TimeDimensionRanged
TimeDimensionRanged: TimeDimensionBase & object
TransportOptions
Name | Type | Description |
---|---|---|
apiUrl | string | path to /cubejs-api/v1 |
authorization | string | jwt auth token |
credentials? | "omit" | "same-origin" | "include" | - |
headers? | Record‹string, string› | custom headers |
UnaryFilter
Name | Type |
---|---|
and? | UnaryFilter[] |
dimension? | string |
member? | string |
operator | UnaryOperator |
or? | UnaryFilter[] |
values? | never |
UnaryOperator
UnaryOperator: "set" | "notSet"